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1. SUMMARY 
 
The purpose of this Visiting Faculty Research Program (VFRP) project was to establish a 
methodology for using a genetic algorithm (GA) to evolve coefficient sets representing 
matched forward and inverse multiresolution transform pairs capable of outperforming 
wavelets for image compression and reconstruction applications subject to quantization 
error. 
 
First, the GA was extended to evolve a single set of coefficients which could be used at 
each level of a multiresolution analysis (MRA) transform. The resulting transform 
outperformed the Daubechies-4 (D4) wavelet in terms of reducing aggregate squared 
error in compressed, reconstructed images at various quantization levels. 
 
Second, the GA was tested using quantization levels of 16, 32, and 64. The results of 
these tests demonstrate that the performance improvement of evolved transforms over 
wavelets increases in proportion to the amount of quantization, with the largest 
improvement occurring for a quantization step of 64. 
 
Third, the GA was used to simultaneously evolve multiple sets of coefficients–one set for 
each level of an MRA transform. The resulting transforms outperformed evolved MRA 
transforms described by a single set of coefficients, and substantially outperformed the 
D4 wavelet, when subsequently tested against a set of standard test images. 
 
Fourth, the multicoefficient set MRA transform approach was used to train a transform 
on a highly specific image (in this case, the image of a grey hammer), in hope that the 
resulting transform would perform very well when tested against similar images (i.e., 
other hammers), but poorly when tested against dissimilar images (e.g., dollar signs, 
deoxyribonucleic acid (DNA) models, and eyedroppers). However, these test results 
suggest that the content of an image has little to do with whether an evolved transform 
performs well or poorly when compressing and reconstructing images under conditions 
subject to quantization.  
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2. INTRODUCTION 
 
Since the late 1980s, engineers, scientists, and mathematicians have used wavelets 
(Daubechies 1992) to solve a wide variety of difficult problems, including fingerprint 
compression (Bradley, Brislawn, and Hopper 1993), signal denoising (Donoho 1993), 
and medical image processing (Aldroubi and Unser 1996). Recent adoption of the Joint 
Photographic Experts Group’s JPEG2000 standard (Taubman and Marcellin 2002) has 
established wavelets as the principal methodology for image compression and 
reconstruction. JPEG2000 utilizes wavelets to improve upon the compression capabilities 
of previous JPEG (International Organization for Standardization (ISO) 1994) and JPEG-
LS (ISO 1999) standards. 
 
Wavelets may be described by four sets of coefficients: 
1. h1 is the set of wavelet numbers for the (forward) discrete wavelet transform (DWT). 
2. g1 is the set of scaling numbers for the DWT. 
3. h2 is the set of wavelet numbers for the inverse DWT (DWT-1). 
4. g2 is the set of scaling numbers for the DWT-1. 
 
For the D4 wavelet, these sets consist of the following floating-point coefficients: 
 

h1 = {-0.129409523, 0.224143868, 0.836516304, 0.482962913} 
g1 = {-0.482962913, 0.836516304, -0.224143868, -0.129409523} 

 h2 = {0.482962913, 0.836516304, 0.224143868, -0.129409523} 
 g2 = {-0.129409523, -0.224143868, 0.836516304, -0.482962913} 
 
A two-dimensional (2-D) DWT of a discrete input image f with M rows and N columns is 
computed by first applying the one-dimensional (1-D) subband transform defined by the 
coefficients from sets h1 and g1 to the columns of f, and then applying the same 
transform to the rows of the resulting signal (Taubman and Marcellin 2002, p. 428. 
Similarly, a 2-D DWT-1 is performed by applying the 1-D DWT-1 defined by sets h2 and 
g2 first to the rows and then to the columns of a previously compressed signal. 
 
A one-level DWT decomposes f into M/2-by-N/2 subimages h1, d1, a1, and v1, where a1 
is the trend subimage of f and h1, d1, and v1 are its first horizontal, diagonal, and vertical 
fluctuation subimages, respectively (Walker 1999). Using the MRA scheme (Mallat 
1989), a one-level DWT may be repeated k ≤ log2(min(M, N)) times. Note that the size of 
the trend signal ai at level i of decomposition will be 1/4i times the size of the original 
image f (e.g., a three-level transform produces a trend subimage a3 that is 1/64th the size 
of f). Nevertheless, the trend subimage will typically be much larger than any of the 
fluctuation subimages; for this reason, the MRA scheme computes a k-level DWT by 
recursively applying a one-level DWT to the rows and columns of the discrete trend 
signal ak-1. Similarly, a one-level DWT-1 is applied k times to reconstruct an 
approximation of the original M-by-N signal f. 
 
Quantization (Mallat 1998) is the most common source of distortion in lossy image 
compression systems. Quantization refers to the process of mapping each of the possible 
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values of a given sampled signal y onto a smaller range of values Q(y). The resulting 
reduction in the precision of data allows a quantized signal q to be much more easily 
compressed. The corresponding dequantization step, Q-1(q), produces signal ŷ that differs 
from the original signal y according to a distortion measure ρ. A variety of techniques 
may be used to quantify distortion; however, if we assume that quantization errors are 
uncorrelated, then the aggregate distortion in the dequantized signal, ρ(y, ŷ), may be 
computed as a linear combination of squared error (SE) for each sample. 
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3. THE GA 
 
The goal of any effective image compression and reconstruction system is to 
simultaneously minimize two parameters: 
1. The number of bits needed to represent the compressed image produced by the 

forward transform (i.e., the compressed file size FS). 
2. The distortion observed in the reconstructed image produced by the corresponding 

inverse transform (i.e., the SE). 
 
The purpose of the research described by this paper was to determine whether a GA 
(Goldberg 1989) could be used to evolve coefficient sets representing nonwavelet 
transforms capable of outperforming wavelet-based multiresolution transforms under 
conditions subject to quantization error. 
 
The following parameters characterize the GA developed to achieve this goal: 
1. The maximum number of evolved generations G = 2000. 
2. The size of the evolving population M = 2000. 
3. The number of multiresolution levels MR = 3. 
4. The probability of crossover pc = 90 percent. 
5. The probability of mutation pm for any candidate solution was initialized to a user-

specified minimum. If the current generation failed to identify a new best-of-run 
solution, pm was increased by a selected increment up to a user-specified maximum 
mutation rate. The training runs described in this paper used min(pm) = 2 percent, 
max(pm) = 20 percent, and a 2 percent increment. 

6. The GA trained each transform using a representative 128- by 128-pixel subimage of 
the standard 512- by 512-pixel “couple.bmp” image. This subimage was chosen 
based on the results of previous investigations which demonstrated that the resulting 
evolved transforms generalized well for other images in the test set. 

 
For each of the tests described in this paper, each candidate solution specified the 
floating-point coefficients for sets g1, h1, h2, and g2. The GA seeded the initial 
population (generation 0) with one exact copy and M-1 randomly mutated copies of the 
D4 wavelet (Ramsey and Grefenstette 1993). Thus, sets g1, h1, h2, and g2 of every 
individual in the population each contained precisely four coefficients. After fitness 
evaluation, the individual with the best fitness value was copied into position 0 of the 
next generation (De Jong 1975), while the remaining M-1 positions were populated using 
tournaments of a user-specified number of randomly selected individuals from the current 
generation (Miller and Goldberg 1995). 
 
Next, the GA performed single-point crossover on adjacent pairs of individuals with 
probability pc. The crossover operator randomly selected one of the four coefficient sets, 
and then randomly selected a crossover point within that set. The coefficients appearing 
at or below the selected crossover point in the selected coefficient set from each parent 
individual were exchanged to create two new candidate solutions. 
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Finally, mutation was performed on each individual with probability pm. For this 
investigation, mutation consisted of multiplying a randomly selected coefficient from a 
randomly selected set (g1, h1, h2, or g2) by a factor randomly selected from a Gaussian 
distribution between 0.0 and 2.0 and centered upon 1.0. Previous studies suggested that 
an occasional sign change of coefficients could also be beneficial in reducing SE; 
therefore, with a (typically very small) user-specified probability, the mutation operator 
used in this study also negated the mutated coefficient. 
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4. FITNESS 
 
This study utilized two key quantities to measure fitness: 
1. File Size Ratio (FSR) = (the size of the file compressed by the evolved forward 

transform) / (the size of the file compressed by the DWT) 
2. Error Ratio (ER) = (the SE in the image reconstructed by the evolved inverse 

transform) / (the SE in the image reconstructed by the DWT-1). 
 
Previous research (Babb, Becke, and Moore 2005) established the existence of a nearly 
linear Pareto-optimal front (Goldberg, Horn, and Nafpliotis 1994) describing the tradeoff 
between these two conflicting criteria. For this study, the fitness of each candidate 
solution against a particular image from the training set was measured as follows: 
1. First, the GA used the forward transform coefficients specified by the candidate 

solution to compress the image. 
2. Next, compressed image was quantized using the quantization step defined for the 

current training run, encoded, decoded, and dequantized. 
3. Finally, the GA reconstructed the image using the inverse transform coefficients 

specified by the candidate solution, and calculated the FSR and ER. 
 
Given a training population consisting of one or more images, this study used the 
following algorithm to estimate the fitness of a given candidate solution: 
 

fitness = 0; 
for each image in the training population  

if (FSR > 1.0 && ER > 1.0) fitness += FSRA + ERB; // case 1 
else if (FSR > 1.0 && ER ≤ 1.0) fitness += FSRC + ER; // case 2 
else if (FSR ≤ 1.0 && ER > 1.0) fitness += FSR + ERD; // case 3 
else fitness += FSRE + ERF;     // case 4 

 
Here, A, B, C, D, E, and F are user-specified constants greater than 1.0. (For this study, A 
= B = C = D = 8 and E = F = 16.) Lower fitness values are better. Cases 1 and 2 thus 
explicitly penalize the fitness of evolved forward and inverse transform pairs that 
increase the size of the compressed file; similarly, cases 1 and 3 penalize transforms that 
result in higher SE. On the other hand, case 4 explicitly rewards evolved transforms that 
simultaneously reduce both compressed file size and SE, relative to the wavelet. 
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5. ONE TRANSFORM FOR ALL MRA LEVELS 
 
Previous research focused upon evolving coefficients for either an inverse nonwavelet 
transform [(Moore, Marshall, and Balster 2005), (Moore 2005)] or a matched forward 
and inverse nonwavelet transform pair (Babb, Becke, and Moore 2005) that reduced 
mean squared error (MSE) relative to the performance of a standard wavelet DWT-1 or 
matched DWT/DWT-1 pair applied to the same images under conditions subject to a 
quantization step of 64. The resulting evolved transforms consistently reduced MSE by as 
much as 25 percent when applied to images from both the training and test sets. 
Unfortunately, none of these previous studies involved MRA; instead, coefficients were 
optimized only for single-level image decomposition and/or reconstruction transforms. 
Subsequent testing demonstrated that the performance of transforms evolved at a single 
level of resolution degraded substantially when subsequently tested in a multiresolution 
environment. 
 
In practice, virtually all wavelet-based compression schemes entail several stages of 
decomposition. Typical wavelet-based MRA applications compress a given image by 
recursively applying the h1 and g1 coefficients a defining single DWT at each of k levels. 
Image reconstruction requires k recursive applications of the h2 and g2 coefficients 
defining the corresponding DWT-1. The JPEG2000 standard allows between 0 ≤ k ≤ 32 
DWT stages; near-optimal performance on full-resolution images is reported for D = 5 
levels (Taubman and Marcellin 2002, p. 429). 
 
The first goal of this research effort was to determine whether a GA could evolve a single 
set of coefficients for a matched evolved forward and inverse transform pair satisfying 
each of the following conditions: 
1. The evolved coefficients were intended for use at each and every level of 

decomposition by a matched multilevel transform pair.  
2. The evolved forward transform produced compressed files whose size was less than 

or equal to those produced by the DWT. 
3. When applied to the compressed file produced by the matching evolved forward 

transform, the evolved inverse transform produced reconstructed images whose SE 
was less than or equal to the SE observed in images reconstructed by the DWT-1 from 
files previously compressed by the DWT. 

 
Previous research also failed to establish the relationship between the specified 
quantization level and the performance of evolved transforms relative to that of wavelets. 
For this reason, the second goal of this research was to establish the performance 
enhancement of evolved transforms over wavelets as a function of quantization. 
 
5.1 Test Results 
 
To achieve the first two research goals described above, three training runs were 
performed. These runs differed only according to the specified quantization level. Test 
results (Table 1) confirmed the GA’s ability to evolve coefficients for a single transform 
that exhibited optimized performance when applied to every level of a multiresolution 
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transform. For Test 3, the GA evolved coefficients that simultaneously reduced SE by 
almost 6.5 percent while maintaining a compressed file size smaller than that produced 
by the D4 wavelet. 
 

Table 1. Improvement of Evolved Transforms over Wavelets as a Function of Quantization Level 
 

   Test Q File Size / SE (DWT) File Size / SE (evolved) Improvement (SE) 
1 16 2162 / 447535.38 2161 / 438555.80 -2.006 percent 
2 32 1229 / 1093462.63 1228 / 1047424.95 -4.210 percent 
3 64 667 / 2527851.95 666 / 2364332.55 -6.469 percent 

 
 

These results, combined with similar observations from previous studies, e.g., Babb, 
Becke, and Moore 2005, substantiate each of the following claims: 
1. A GA is capable of evolving matched forward and inverse transform pairs that 

outperform wavelets at a specified quantization level. 
2. The performance improvement of evolved transforms over wavelets increases in 

proportion to the level of quantization. 
 
Note that, although coefficient sets g1, h1, h2, or g2 for every candidate solution were 
initialized to randomly perturbed copies of the coefficients defining the D4 wavelet, 45 of 
the 48 coefficients (93.75 percent) have undergone some change during the evolutionary 
process. This result corroborates previous test data and underscores the fact that the 
search space immediately adjacent to the D4 wavelet appears to be rich with nonwavelet 
transforms that may outperform wavelets under conditions subject to quantization error. 
Close inspection of these coefficients reveals an interesting phenomenon: in general, the 
greater the amount of quantization, the greater the difference between evolved 
coefficients and wavelet coefficients. Also interesting is the fact that none of the evolved 
coefficients differed in sign from the corresponding wavelet coefficient. Whatever 
benefits the sign change mutation may have had during previous studies (without 
multiresolution) appears to have been eliminated during the evolution of a single set of 
coefficients for the optimized multiresolution transforms identified during this study. 
  
Table 2 tabulates the coefficients produced by the training runs from Table 1 and notes 
the percentage change in each evolved coefficient from sets g1, h1, h2, and g2 relative to 
the corresponding coefficient from the D4 wavelet.  
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Table 2. Evolved Coefficients and Percentage Change from D4 Coefficients: 
One Transform for All MRA Levels 

 
Test Set Coefficients (Percentage magnitude difference from D4 coefficients) 
1 g1 -0.4831928406 (+0.05 percent) 
  0.8365163040 (unchanged) 
  -0.2277694276 (+1.62 percent) 
  -0.1289164106 (-0.38 percent) 
 h1 -0.1294917987 (+0.06 percent) 
  0.2242505778 (+0.05 percent) 
  0.8398953785 (+0.40 percent) 
  0.4793849332 (-0.74 percent) 
 h2 0.4830777810 (+0.02 percent) 
  0.8291240048 (-0.88 percent) 
  0.2251359248 (+0.44 percent) 
  -0.1227483711 (-5.15 percent) 
 g2 -0.1318678078 (+1.90 percent) 
  -0.1988169414 (-11.30 percent) 
  0.8344765791 (-0.24 percent) 
  -0.4649087239 (-3.74 percent) 
2 g1 -0.4851359202 (+0.45 percent) 
  0.8394985463 (+3.57 percent) 
  -0.2269758897 (+1.26 percent) 
  -0.1264251009 (-2.31 percent) 
 h1 -0.1300256428 (+0.48 percent) 
  0.2240904941 (-0.02 percent) 
  0.8398953785 (+0.40 percent) 
  0.4798481072 (-0.64 percent) 
 h2 0.4845747470 (+0.33 percent) 
  0.8203178205 (-1.94 percent) 
  0.2232898873 (-0.38 percent) 
  -0.1133667585 (-12.40 percent) 
 g2 -0.1312233947 (+1.40 percent) 
  -0.1681967819 (-24.96 percent) 
  0.8352313868 (-0.15 percent) 
  -0.4547615370 (-5.84 percent) 
3 g1 -0.5008454816 (+3.70 percent) 
  0.8365163040 (unchanged) 
  -0.2158388997 (-3.71 percent) 
  -0.1314604618 (+1.58 percent) 
 h1 -0.1285400096 (-0.67 percent) 
  0.2241438680 (unchanged) 
  0.8377104749 (+0.14 percent) 
  0.4827317796 (-0.05 percent) 
 h2 0.4896825540 (+1.39 percent) 
  0.8082258125 (-3.38 percent) 
  0.2183220074 (-2.60 percent) 
  -0.1034099818 (-20.09 percent) 
 g2 -0.1443190513 (+11.52 percent) 
  -0.1399062106 (-37.58 percent) 
  0.8240345243 (-1.49 percent) 
  -0.4365732803 (-9.61 percent) 
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6. DIFFERENT TRANSFORMS FOR EACH OF K MRA LEVELS 
 
Traditionally, MRA techniques apply the same DWT at every level of decomposition. As 
discussed above, the trend subimage ak produced by the forward transform at level k 
becomes the input signal to the forward transform at level k+1. Since subimage ak+1 
generally corresponds to the vertically low-frequency and horizontally low-frequency 
(LL) subband output produced by the application of a separable low-pass filter to ak, the 
frequency content of ak+1 will differ substantially from that of ak. Since the performance 
of any particular transform also varies with frequency, it seemed plausible that a 
multiresolution transform could be enhanced by evolving a different transform at each 
resolution level. Each evolved transform would, in effect, be targeted towards a particular 
frequency range. In light of these observations, the third goal of this research was to use 
the GA to evolve a different set of optimized g1, h1, h2, and g2 coefficients for each 
resolution level of a matched forward and inverse MRA transform.  
 
6.1  Test Results 
 
Table 3 summarizes the result of a preliminary test, which used a quantization step of 64. 
This result suggests that additional reduction in aggregate squared error may be obtained 
by evolving matched forward and inverse transform coefficients that are optimized to 
perform at a specified MRA level. 
 

Table 3. Improvement of Evolved Transforms over Wavelets: 
One Coefficient Set Per Multiresolution Level 

 
File Size / SE (DWT)  File Size / SE (evolved) Improvement (SE) 

 667 / 2527851.95 666 / 2285856.38 -9.573 percent 
 

 
Table 4 lists the g1, h1, h2, and g2 coefficients evolved at each level. Note that a variety 
of conventions for designating multiresolution levels appear in the literature. Table 4 
labels the first-level forward transform, i.e., the transform applied to the original image, 
“MR Level 1,” the second-level forward transform (applied to the first trend subsignal a1) 
“MR Level 2,” and the third-level forward transform (applied to the second trend 
subsignal a2) “MR Level 3.” Inverse transform coefficients are applied in reverse order. 
 
GAs have proven especially useful for searching unpredictable search spaces. The result 
tabulated in Table 4 illustrates the utility of using a GA to search the transform space 
immediately adjacent to the wavelet for nonwavelet transforms exhibiting optimized 
performance. Interesting aspects of the evolved coefficients include the following: 
 
1. The solution space for this problem is enormous, requiring simultaneous optimization 

of 48 floating-point coefficient values. Only 36 coefficients (75 percent) had 
undergone any modification in the best-of-run solution (i.e., the remaining 12 
coefficients were equal to the corresponding coefficients from the D4 wavelet). This 
result suggests that a much larger run of the GA will be necessary to encourage 
further exploration of this solution space. 
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Table 4. Evolved Coefficients and Percentage Change from D4 Coefficients: 

One Coefficient Set Per Multiresolution Level 
 

MR Level Set Coefficients (Percentage magnitude difference from D4 coefficients) 
1 g1 -0.5046268794 (+4.49 percent) 
  0.8088144645 (-3.31 percent) 
  -0.1943402200 (-13.30 percent) 
  -0.0914463013 (-29.34 percent) 
 h1 -0.1294095230 (unchanged) 
  0.2241438680 (unchanged) 
  0.8365163040 (unchanged) 
  0.4829629130 (unchanged) 
 h2 0.4703775944 (-2.61 percent) 
  0.8188892589 (-2.11 percent) 
  0.2425934518 (+8.23 percent) 
  -0.1066458058 (-17.59 percent) 
 g2 -0.1037258819 (-19.85 percent) 
  -0.0636110754 (-71.62 percent) 
  0.7472791434 (-10.67 percent) 
  -0.2806335741 (-58.11 percent) 
2 g1 -0.5492671638 (+13.73 percent) 
  0.8858099497 (+5.89 percent) 
  -0.2247833668 (+2.85 percent) 
  -0.1272344181 (-1.59 percent) 
 h1 -0.1237069434 (-4.41 percent) 
  0.2251024349 (0.43 percent) 
  0.8365163040 (unchanged) 
  0.4833077634 (+0.07 percent) 
 h2 0.4977626976 (+3.06 percent) 
  0.7970895235 (-4.71 percent) 
  0.2136541208 (-4.68 percent) 
  -0.0881120885 (-68.09 percent) 
 g2 -0.1466747685 (+13.34 percent) 
  -0.1045140657 (-53.37 percent) 
  0.7647935800 (-8.57 percent) 
  -0.4169790429 (-13.66 percent) 
3 g1 -0.4829629130 (unchanged) 
  0.8365163040 (unchanged) 
  -0.2241438680 (unchanged) 
  -0.1366008437 (-1.59 percent) 
 h1 -0.1340944162 (+3.62 percent) 
  0.2241438680 (unchanged) 
  0.8365163040 (unchanged) 
  0.4829629130 (unchanged) 
 h2 0.4820421058 (-0.19 percent) 
  0.8189838421 (-2.10 percent) 
  0.2169559598 (-3.21 percent) 
  -0.1233530196 (-4.68 percent) 
 g2 -0.1294095230 (unchanged) 
  -0.1866018343 (-16.75 percent) 
  -0.8181892891 (-2.19 percent, change of sign) 
  -0.5041215305 (+4.38 percent) 
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2. All but one of the 48 coefficients (97.92 percent)–the third coefficient of g2 for the 

MR Level 3 inverse transform from Table 4–retain the sign of the corresponding D4 
wavelet coefficients. 

3. The h1 coefficients for all three multiresolution levels remain virtually unchanged. 
4. The g1 coefficients vary wildly from one multiresolution level to the next. While g1 

coefficients at MR Level 3 remain virtually unchanged, the magnitude of the third 
and fourth g1 coefficients at MR Level 1 have substantially shrunk, and the 
magnitude of the first g1 coefficient at MR Level 2 has substantially grown. 

5. Variance in the g2 coefficients is even greater than that of the g1 coefficients: the 
magnitude of the second and fourth g2 coefficients at MR Level 1 decreased by more 
than 71 percent and 58 percent, respectively, and the second g2 coefficient at MS 
Level 2 decreased in magnitude by over 53 percent. While all four g2 coefficients at 
MR Level 1 substantially decreased in magnitude, the first g2 coefficient at MR Level 
2 actually increased by more than 13 percent. In addition, changes to g2 coefficients 
at MR Level 3 appear to be almost chaotic. 
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7. EVOLUTION OF GA TRANSFORMS TO DETECT SPECIFIC SUBIMAGES 
 
Previous research suggested that it may be possible use a GA to evolve a matched 
DWT/DWT-1 pair capable of highlighting a specific subimage within a larger scene. Such 
a transform might be specifically designed to highlight, for example, each existence of a 
particular type of vehicle in a series of satellite images. To begin to determine whether an 
evolved transform might be used to solve this problem, a large set of thumbnail-style 
images was downloaded from the internet. Several of these images are shown in Figure 1. 
In addition, several subimages extracted from images commonly found in the wavelet 
literature were used. Some of these subimages are shown in Figure 2, where most and 
least indicate the subimage with the highest and lowest energy, respectively. 
 
Since HammerGrey and HammerRed are quite similar, and are distinct from each of the 
other images, HammerGrey was used to train the transform coefficients. As with the 
previous tests, MR = 3 multiresolution levels were used with a quantization step of 64, 
and the initial population was seeded with mutated copies of the D4 wavelet. After 
 

      
books  dna  dollar  eyedropper fish  floppy 
 

    
HammerGrey   HammerRed 

 
Figure 1. Highly Specific Thumbnail-style Images: 48- by 48-pixel Bitmap Files (.bmp) 

 

    
couple_most  couple_least  fruits_most  fruits_least 
 

  
Lenna_most  Lenna_least 
 

Figure 2. 128- by 128-pixel Subimages 
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evolving M = 1000 candidate solutions over G = 2000 generations, the GA produced the 
best-of run coefficients shown in Table 5. 
 

Table 5. Coefficients Evolved Using HammerGrey 
 

MR Level  Set Coefficients 
1  g1 -0.5015777213 
   0.8408070988 
   -0.1987352786 
   -0.1361857608 
  h1 -0.1380635886 
   0.2058384465 
   0.8365163040 
   0.4919633499 
  h2 0.4878009237 
   0.8359185788 
   0.2221604921 
   -0.1295116018 
  g2 -0.0890826154 
   -0.1135785638 
   0.8145441704 
   -0.4094149435 
2  g1 -0.4829629130 
   0.8365163040 
   -0.2230739628 
   -0.1294095230 
  h1 -0.1294095230 
   0.2267955049 
   0.8365163040 
   0.4829629130 
  h2 0.4911973331 
   0.8257232257 
   0.2199939874 
   -0.1181444442 
  g2 -0.1230087228 
   -0.1359064655 
   0.8292301190 
   -0.4342508398 
3  g1 -0.4829629130 
   0.8365163040 
   -0.2226445611 
   -0.1259429845 
  h1 -0.1281088918 
   0.2342685134 
   0.8381081538 
   0.4822023422 
  h2 0.4829629130 
   0.8343225514 
   0.2233419196 
   -0.1282597086 
  g2 -0.1577490928 
   -0.1950099635 
   0.8275370985 

    -0.4647737675 
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Next, these coefficients were applied to the images and subimages shown in Table 5. 
Table 6 tabulates the file size and SE for the evolved transform and the D4 transform, and 
notes the percentage change in each. 
 

Table 6. Performance of Coefficients Evolved Against HammerGrey when Tested Against Other 
Images 

 
Figure  File Size/SE (DWT) File Size/SE (evolved) Improvement (SE) 
HammerGrey 241 / 624730.12  240 / 569595.39  -8.825 percent 
HammerRed 183 / 663310.12  184 / 640356.89  -3.460 percent 
Books  483 / 1390262.01  483 / 1422944.97  +2.351 percent 
DNA  328 / 1248011.21  331 / 1219049.78  -2.321 percent 
Dollar  76 / 134424.91  77 / 128736.47  -4.232 percent 
Eyedropper 134 / 392939.11  123 / 378155.99  -3.762 percent 
Fish  136 / 447656.67  137 / 429758.13  -3.998 percent 
Floppy  216 / 507150.66  221 / 517934.93  +2.216 percent 
Couple_most 667 / 2527851.95  666 / 2478155.70  -1.966 percent 
Couple_least 424 / 1302731.91  428 / 1283673.14  -1.463 percent 
Fruits_most 715 / 2062588.47  707 / 2084257.73  +1.051 percent 
Fruits_least 346 / 407252.59  346 / 414928.81  +1.885 percent 
Lenna_most 508 / 1588478.43  507 / 1533484.44  -2.203 percent 
Lenna_least 341 / 690361.71  341 / 692251.41  +0.274 percent 
 

 
These results indicate that an MRA transform trained against a single distinct image 
(HammerGrey) averages only 1.202 percent SE reduction over the entire set of test 
images. In spite of achieving nearly 9 percent SE reduction on the training image, the 
evolved transform only achieved a 3.460 percent reduction on a nearly identical test 
image (HammerRed), and performed equally well on such dissimilar test images as 
Dollar (4.232 percent reduction), Eyedropper (3.762 percent reduction), and Fish (3.998 
percent reduction). In short, none of these results lend much credibility to the initial 
hypothesis. The fact that the performance of this evolved transform approximately 
equaled that of the standard D4 wavelet on similar and dissimilar images appears to 
indicate that the goal of evolving a transform to highlight a particular subimage within a 
larger scene cannot be achieved using the GA-based approach described in this paper. 
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8. CONCLUSIONS 
 
This research demonstrated each of the following key points: 
1. A GA could evolve coefficients describing a single matched forward and inverse 

transform pair that was capable of outperforming a similarly structured standard 
DWT for a specified MRA level. 

2. The advantage of using evolved MRA transforms over DWTs increased in proportion 
to the specified quantization level. 

3. The GA could be extended to evolve a different set of coefficients for each level of an 
evolved MRA transform. At a quantization level of 64, transforms described by 
multiple coefficient sets outperformed transforms that applied a single set of evolved 
coefficients at each level of MRA analysis, and substantially outperformed the D4 
wavelet. 

4. Considerable additional testing will be necessary over a variety of training scenarios 
to determine whether any discernable pattern in the evolved coefficients emerges. 

5. Training on a visually specific image does not result in the evolution of transforms 
suitable for finding similar images among a larger image set. 

 
Statistical validation of the preliminary results described above will necessitate 
completion of a much greater number of training runs. Such tests will necessitate several 
weeks of computation. The relatively short duration of the Air Force Research 
Laboratory’s Summer 2005 VFRP made completion of these tests infeasible.  
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9. FUTURE DIRECTIONS 
 
During the course of this investigation, it became clear that the amount of computation 
needed to establish an upper bound on the performance enhancement to be gained via 
evolved transforms far exceeded available resources. The results summarized above 
should be interpreted as having demonstrated the feasibility of using GAs to evolve 
optimized MRA transforms. Close inspection of training run results indicate that the GA 
were continuing to make evolutionary progress, even as the number of generations 
approached the selected maximum number (G). It thus appears likely that the 
performance of evolved MRA transforms relative to wavelets could be further enhanced, 
merely by increasing the size of each training run. 
 
Similarly, the results of this investigation place no upper bound on the performance 
enhancement to be gained from evolving multiple sets of g1, h1, h2, and g2 coefficients 
for a multiresolution transform (one set per multiresolution level). The results of this 
investigation merely demonstrated the benefits of this approach over applying a single set 
of (standard wavelet or evolved) coefficients at every level of decomposition. Larger 
scale runs may be able to evolve multiple sets of coefficients for MRA transforms that 
result in considerably greater SE reduction for various classes of images. 
 
Clearly, future research must determine ways to begin to converge upon an upper bound 
of performance enhancement. The obvious first step towards this goal would be to exploit 
available clusters (Bonham and Parmee 1999) and/or supercomputers (Brinkman, 
Merkle, Lamont, and Pachter 1993) to greatly accelerate GA computation. Other steps 
should employ various benchmarking techniques to determine whether evolutionary 
progress can be improved by using smaller populations (Monsieurs and Flerackers 2003), 
smaller training images, different crossover and mutation schedules, different methods of 
creating training populations, etc. In addition, a self-tuning GA (Galaviz-Casas and Kuri 
1996) might be able to adjust control parameters more effectively during the course of a 
training run. Finally, the use of alternative numerical optimization techniques (Corne, 
Dorigo, and Glover 1999), including differential evolution (Price, Storn, and Lampinen 
2005), should be considered for future investigations. 
 
It is possible that the GA methodology established by this research could be used to 
evolve post-reconstruction transforms that do a much better job of approximating the 
original image than current evolved inverse transforms. Such transforms may take 
advantage of fitness measures, such as the Statistical, Sampling Inventory Method 
(SSIM) metric (Wang et al. 2004), that more accurately model human visual system 
response. 
 
The research suggested that visual content of images has no discernable impact the 
performance of evolved transforms, as measured by the SE metric: transforms evolved 
against the hammerGrey image performed equivalently to the D4 wavelet on such diverse 
images as hammerRed, eyedropper, and dollarSign. However, prior research also 
suggested that the performance of transforms trained against signals with similar energy 
distribution will deteriorate when tested against signals having a very different energy 
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distribution. Future research should focus upon the problem of evolving transforms that 
are sensitive to specific energy distributions. This line of research may ultimately lays the 
foundation for creating transforms capable of highlighting subimages having specific 
energy distributions within larger scenes. 
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LIST OF ACRONYMS 
 
AFIT: Air Force Institute of Technology, Dayton, Ohio 
AFRL: Air Force Research Laboratory 
D4: Daubechies-4 wavelet 
DNA: deoxyribonucleic acid 
DWT: (forward) discrete wavelet transform 
DWT-1: inverse (reverse) discrete wavelet transform 
ER: error ratio 
FSR: file size ratio 
FS: file size 
G: the maximum number of generations for a genetic algorithm run 
GA: genetic algorithm 
ISO: International Organization of Standardization 
JPEG: Joint Photographic Experts Group 
LL: vertically low-frequency and horizontally low-frequency 
M: the size of the evolving population for a genetic algorithm run 
MR: the number of multiresolution levels 
MRA: multiresolution analysis 
MSE: mean squared error 
NY: New York 
OH: Ohio 
pc: probability of crossover 
pm: probability of mutation 
Q: quantization 
Q-1: dequantization 
RRS: Rome Research Site, Rome, New York 
SE: squared error 
VFRP: Visiting Faculty Research Program 
WPAFB: Wright-Patterson Air Force Base, Dayton, Ohio 


